井-地-孔联合微震在多煤层开采顶板断裂高度监测中的研究
Study onApplication of Underground-Surface-Borehole Joint Microseismic Technology in Multi-Seam Coal Mining Roof Fracture Height Monitoring
段建华
摘要(Abstract):
华北煤田西部鄂尔多斯侏罗系煤田顶板水害严重,而其导水裂缝带高度是评价顶板水害程度的关键水文地质参数,因此准确测定导水裂隙带发育高度是顶板水害防治的关键技术。井-地-孔联合微震监测技术具有实时、连续、动态、长期监测的优点,可以在地面、井下和孔中等位置布置传感器,形成对测区的全方位监测,具有比传统微震监测技术更高的定位精度,尤其是垂直方向的定位精度更高,能够满足防治水的要求。以布尔台煤矿42202工作面为例,在地面和井下巷道同时布置传感器,构建了井-地联合微震监测系统,对工作面回采过程中顶板裂隙发育高度进行实时监测,监测结果表明:42202工作面回采时顶板岩层破裂产生的地震波能够顺利穿越上组煤采空区到达地面,被仪器接收。此次监测回采工作面长800m,工作面回采过程中顶板裂隙发育高度为150~160 m,其测量结果与钻孔实测法获得的结果一致,而且工作面靠近未采区域侧的顶板裂隙比靠近采空区侧的更发育。研究表明利用井-地联合微震监测技术可以对工作面回采过程中顶板裂隙发育高度进行实时、高精度监测,对于顶板水害防治具有重要意义和实用价值。
关键词(KeyWords): 顶板水害;井-地-孔联合微震监测技术;钻孔实测
基金项目(Foundation): 国家重点研发计划课题(2017YFC0804103);; 中煤科工集团有限公司科技创新基金项目(2017MS007)资助项目
作者(Author): 段建华
参考文献(References):
- [1]黄澎涛.华北型矿区顶板巨厚低渗透含水层水害区域治理模式研究[J].中国煤炭地质,2019,31(12):89-93. Huang Pengtao.Study on foofmegathick low permeability aquifer water hazard regional governance mode in north china type mining areas[J].Coal Geology of China,2019,31(12):89-93.
- [2]刘英锋,王新.黄陇侏罗纪煤田顶板水害防治问题及对策探讨,西安科技大学学报[J].2013,33(4):431-435.LIU Yingfeng,WANG Xin.Water hazard prevention and control in Huanglong Jurassic coalfield[J]. Journal of Xi’an University of Science and Technology,2013,33(4):431-435.
- [3]李超峰.矿井涌水模式及顶板水害防治关键技术[J].煤炭技术,2018,37(6):153-156.LI Chaofeng,ZHANG Xueru.Mode of Water Inflow of Mine and Key Technologies of Controlling and Preventing Water-inrush from Roof[J]. Coal Technology,2018,37(6):153-156.
- [4]王双明,黄庆享,范立民,等.生态脆弱矿区含(隔)水层特征及保水开采分区研究[J].煤炭学报,2010,35(1):7-14.WANG Shuangming,HUANG Qingxiang,FAN Limin,et al. Study on overburden aquclude and water protection mining regionazationin the ecological fragile mining area[J].Journal of China Coal Society,2010,35(1):7-14.
- [5]范立民.保水采煤的科学内涵[J].煤炭学报,2017,42(1):27-35.FAN Limin.Scientific connotation of water-preserved mining[J]. Journal of China Coal Society,2017,42(1):27-35.
- [6]张建民,李全生,南清安,等.西部生态脆弱区现代煤-水仿生共采理念与关键技术[J].煤炭学报,2017,42(1):66-72.ZHANG Jianmin,LI Quansheng,NAN Qing’an,et al. Study on the bionic coal&water co-mining idea and key technological system in the ecological fragile region of west China[J]. Journal of China Coal Society,2017,42(1):66-72.
- [7]马雄德,范立民,张晓团,等.基于遥感的矿区土地荒漠化动态及驱动机制[J].煤炭学报,2016,41(8):2063-2070.MA Xiongde,FAN Limin,ZHANG Xiaotuan,et al.Dynamiccha-ngeof land desertification and its driving mechanism in Yushenfu mining area based on remote sensing[J].Journal of China Coal Society,2016,41(8):2063-2070.
- [8]袁亮.我国煤炭资源高效回收及节能战略研究[J].中国矿业大学学报,2018,20(1):3-12. YUAN Liang.Strategies of high efficiency recovery and energy saving for coal resources in China[J].Journal of China University of Mining&Technology(Social Sciences),2018,20(1):3-12.
- [9]洪益青,祁和刚,丁湘,等.蒙陕矿区深部侏罗纪煤田顶板水害防控技术现状与展望[J].中国煤炭地质,2017,29(12):55-62. HONG Yiqing,QI Hegang,DING Xiang,et al.Status Quo and Prospect of Jurassic Coalfield Deep Part Roof Water Hazard Control Technology in Inner Mongolia and Shaanxi Mining Areas[J].COAL GEOLOGY OF CHINA,2017,29(12):55-62.
- [10]武强.我国矿井水防控与资源化利用的研究进展、问题和展望[J].煤炭学报,2014,39(5):795-805. WU Qiang. Progress,problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795-805.
- [11]李东,刘生优,张光德,等.鄂尔多斯盆地北部典型顶板水害特征及其防治技术[J].煤炭学报,2017,42(12):3249-3254. LI Dong,LIU Shengyou,ZHANG Guangde,et al.Typical roof water disasters and its prevention&control technology in the north of Ordos Basin[J].Journal of China Coal Society,2017,42(12):3249-325.
- [12]仵拨云,彭捷,向茂西,等.榆神府矿区保水采煤受保护萨拉乌苏组含水层研究[J].采矿与安全工程学报,2018,35(5):984-990.WU Boyun,PENG Jie,XIAN GMaoxi,et al.Research on Salawusuformation aquifer protected by water preserving mining in Yushen-fu mining area[J].Journal of Mining&Safety Engineering,2018,35(5):984-990.
- [13]黄庆享,张文忠.浅埋煤层条带充填保水开采岩层控制[M].北京:科学出版社,2014.
- [14]吕广罗,田刚军,张勇,等.巨厚砂砾岩含水层下特厚煤层保水开采分区及实践[J].煤炭学报,2017,42(1):189-196.LU Guangluo,TIAN Gangjun,ZHANG Yong,et al.Division and practice of water-preserved mining in ultra-thick coal seam under ultra thick sandy conglomerate aquifer[J].Journal of China Coal Society,2017,42(1):189-196.
- [15]王悦,夏玉成,杜荣军.陕北某井田保水采煤最大采高探讨[J].采矿与安全工程学报,2014,31(4):558-563. WANG Yue,XIA Yucheng,DU Rongjun.Discussion on maxim-um mining height of coal mining under watercontaining condi-tion in one mine field of northern Shaanxi province[J].Journal of Mining&Safety Engineering,2014,31(4):558-563.
- [16]国家煤矿安全监察局.煤矿防治水规定释义[M].徐州:中国矿业大学出版社,2009.
- [17]虎维岳.矿山水害防治理论与方法[M].北京:煤炭工业出版社,2005.
- [18]许家林.岩层采动裂隙演化规律与应用[M].徐州:中国矿业大学出版社,2016.
- [19]白利民,尹尚先,李文.综采一次采全高顶板导水裂缝带发育高度的计算公式及适用性分析[J].煤田地质与勘探,2013,41(5):36-39. BAI Limin,YIN Shangxian,LI Wen.Calculation formula of water conducting zone height in roof for fully mechanized mining and its adaptability analysis[J].Coal Geology&Exploration,2013,41(5):36-39.
- [20]刘英锋,郭小铭.导水裂缝带部分波及顶板含水层条件下涌水量预测[J].煤田地质与勘探,2016,44(5):97-101. LIU Yingfeng,GUO Xiaoming.Prediction of water inflow in roof aquifer affected by water-flowing fracture zone[J]. Coal Geology&Exploration,2016,44(5):97-101.
- [21]武强,赵苏启,董书宁,等.煤矿防治水手册[M].北京:煤炭工业出版社,2013.
- [22]孙庆先,牟义,杨新亮.红柳煤矿大采高综采覆岩“两带”高度的综合探测[J].煤炭学报,2013,38(S2):283-286.SUN Qingxian,MU Yi,YANG Xinliang. Studyon"two-zone"Heightof overlying of fully-mechanized technology with high mining height at Hongliu Coal Mine[J].Journal of China Coal Society,2013,38(S2):283-286.
- [23]许延春,李俊成,刘世奇,等.综放开采覆岩“两带”高度的计算公式及适用性分析[J].煤矿开采,2011,16(2):4-7. XU Yanchun,LI Juncheng,LIU Shiqi,et al.Calculation formula of"Two-zone"height of overlying strata and its adaptability analysis[J].Coal mining Technology,2011,16(2):4-7.
- [24]丛森,程建远,王云宏,等.导水裂隙带发育高度的微震监测研究[J].中国矿业,2017,26(3):126-131. CONG Sen,CHENG Jianyuan,WANG Yunhong,et al.Study on microseismic monitoring of height of water flowing fracture zone[J].CHINA MINING MAGAZINE,2017,26(3):126-131.
- [25]张玉军,李凤明.高强度综放开采采动覆岩破坏高度及裂隙发育发育演化监测分析[J].岩石力学与工程学报,2011,30(S1):2994-3001.ZHANG Yujun,LI Fengming.Monitoring analysis of fissure development evolution and height of overburden failure of high tension fully-mechanized caving mining[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(S1):2994-3001.
- [26]郭文兵.煤矿开采损害与保护[M].北京:煤炭工业出版社,2013.
- [27]鲁晶津,王冰纯,颜羽.矿井电法在煤层采动破坏和水害监测中的应用进展[J].煤炭科学技术,2019,47(3):18-26. LU Jingjin,WANG Bingchun,YAN Yu.Advances of mine electrical resistivity method applied in coal seam mining destruction and water inrush monitoring[J]. Coal Science and Technology,2019,47(3):18-26.
- [28]冯国财,徐白山,王东.三台子水库下压煤综放开采覆岩破坏充水特征[J].采矿与安全工程学报,2014,31(1):108-114. Feng Guocai,Xu Baishan,Wang Dong. Features of overburden failure and water filling in coal mining with sub-level caving under San-taizi reservoir[J]. Journal of Mining&Safety Enginee-Ring,2014,31(1):108-114.
- [29]张彬,牟义,张俊英,等.瞬变电磁法在导水裂隙带高度探测中的研究应用[J].煤炭工程,2011,(3):44-46. Zhang Bin,Mou Yi,Zhang Junying,etal.Research and application of transient electromagnetic method for height detection of water flowing fractured zone[J].Coal Engineering,2011,(3):44-46.
- [30]吴荣新,张卫,张平松.并行电法监测工作面“垮落带”岩层动态变化[J].煤炭学报,2012,37(4):571-577. Wu Rongxin,Zhang Wei,Zhang Pingsong.Exploration of parallel electrical technology for the dynamic variation of caving zone strata in coal face[J].Journal of China Coal Society,2012,37(4):571-577.
- [31]孔令海,李峰,欧阳振华,等.采动覆岩裂隙分布特征的微震监测研究[J].煤炭科学技术,2016,44(1):109-113,143.Kong Linghai,Li Feng,Ouyang Zhenhua,et al.Study on microsei-smic monitoring and measuring of crack distribution features in mining overburden strata[J]. Coal Science and Technology,2016,44(1):109-113,143.
- [32]徐树媛,张永波,时红,等.采动覆岩导水裂隙带发育高度研究进展[J].科学技术与工程,2018,18(34):139-148. XU Shuyuan,ZANG Yongbo,SHI Hong,et al.Advances in the height of fractured water-conducting zone of mining overburden[J]. Science Technology and Engineering,2018,18(34):139-148.
- [33]李超峰,虎维岳,王云宏,等.井–孔联合微震技术在工作面底板破坏深度监测中的应用[J].煤田地质与勘探,2018,46(1):101-107. LI Chaofeng,HU Weiyue,WANG Yunhong,et al.Comprehensive detection technique for coal seam roof water flowing fractured zone height[J]. COAL GEOLOGY&EXPLORATION,2018,46(1):101-107.
- [34]段建华,闫文超,南汉晨,等.井-孔联合微震技术在工作面底板破坏深度监测中的应用[J],煤田地质与勘探,2020,48(1):208-220. DUAN Jianhua,YAN Wenchao,NAN Hanchen,et al.Application of mine-hole joint microseismic technology in monitoring the damage depth of working face floor[J].COAL GEOLOGY&EXPLORATION,2020,48(1):208-220.
- [35]Hardy R.Acousticemission/microseismicactivity:Volume 1[M].Lisse,Netherlands:A.A.Balkema Publishers,2003.
- [36]Ge Maochen.Efficient mine microseismicmonitoring[J]. International Journal of Coal Geology,2005,64(8):44-56.https://doi.org/10.13225/j.cnki.jccs.YG19.1530
- [37]何学秋,王安虎,窦林名,等.突出危险煤层微震区域动态监测技术[J].煤炭学报,2018,43(11):3122-3129. HE Xueqiu,WANG Anhu,DOU Linming,et al.Technology of microseismic dynamic monitoring on coal and gas out-burst-prone zone[J].Journal of China Coal Society,2018,43(11):3122-3129.
- [38]陈栋,王恩元,李楠.千秋煤矿微震震源参数特征以及震源机制分析[J].煤炭学报,2019,44(7):2011-2019. CHEN Dong,WANG Enyuan,LINan.Analysis of microseismic source parameters and focal mechanism in Qianqiu coalmine[J]. Journal of China Coal Society,2019,44(7):2011-2019.
- [39]李楠,王恩元,GE Maochen.微震监测技术及其在煤矿的应用现状与展望[J],煤炭学报,2017,42(1):83-96. LINan,WANG Enyuan,GEMaochen.Microseismic monitoring technique and its applications at coal mines present status and future prospects[J].Journal of China Coal Society,2017,42(1):83-96.
- [40]卢新明,阚淑婷.煤矿动力灾害本源预警方法关键技术与展望[J].煤炭学报.
- [41]高原,周蕙兰,郑斯华,等.测定震源深度的意义的初步讨论[J].中国地震,1997,13(3):321-329. GAO Yuan,ZHOU Huilan,ZHENG Sihua,etal.Preliminarydiscu-ssion on the significance of determining focal depth[J].China Earthquake,1997,13(4):321-329.
- [42]Mendecki A J.Seismic Monitoring in Mines[M].London:Chapman and Hall Press,1997.
- [43]田玥,陈晓非.地震定位研究综述[J].地球物理学进展,2002,17(1):1-10.TIAN Yue,CHEN Xiaofei.Review of earthquake location research[J].Progress in Geophysics,2002,17(1):1-1.