基于MIP试验下的煤微观结构研究和分形定量表征Microstructure Study and Fractal Quantitative Characterization of Coal Based on MIP Test
巫斌伟
摘要(Abstract):
为了解地下煤火对煤裂隙孔隙的影响,将压汞法(MIP)和分形计算相结合,研究高温处理下的煤孔隙裂隙发展的规律并计算分维数,分析煤孔隙裂隙发展与分维数之间的关系。结果表明200℃高温处理的煤样(C200)总孔体积(0.171 5 mL/g)大于400℃高温处理后的煤样(C400)总孔体积(0.120 9 mL/g),均大于原煤的0.113 5 mL/g,孔体积增加主要是中孔和大孔,C200中孔和大孔体积占比为70.15%以及C400占比59.97%。MIP分维数随温度的升高呈现降低的趋势,温度越高煤样贯通性越好,C200和C400孔体积和三维分维数的变化呈现相反的趋势与煤基质在不同温度下受力不同有关。温度越高分维数越小,裂隙孔隙的贯通程度越好,煤的内部微观结构不同尺寸的分布相对均匀。
关键词(KeyWords): 压汞法(MIP);分维数;孔隙裂隙结构;分形特征
基金项目(Foundation):
作者(Author): 巫斌伟
参考文献(References):
- [1]CLARKSON C R,BUSTIN R M.The effect of pore structure and gas pressure upon the transport properties of coal:a laboratory and modeling study.1.Isotherms and pore volume distributions[J].Fuel,1999,78(11):1333-1344.
- [2]唐晓明,王鹤鸣,苏远大,等.用孔隙、裂隙介质弹性波理论反演岩石孔隙分布特征[J].地球物理学报,2021,64(8):2941-2951.
- [3]NIE B S,LIU X F,YANG L L,et al.Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J].Fuel,2015,158:908-917.
- [4]田洪波,蒋曙光,李玥,等.功率声波激励下无烟煤孔隙变化及裂隙发育研究[J].煤矿安全,2017,48(8):9-12.
- [5]MANDELBROT B B.How Long Is the Coast of Britain?Statistical Self-Similarity and Fractional Dimension[J].Science,1967,156(3775):636-638.
- [6]MANDELBROT B B,WHEELER J A.The fractal geometry of nature[J],American Journal of Physics.1983,51(3):286-287.
- [7]CHAKERIAN D,MANDELBROT B B.The fractal geometry of nature[J].The College Mathematics Journal,1984,15(2):175-175.
- [8]么玉鹏,姜波,李明,等.构造煤裂隙及渗流孔隙分形特征研究[J].煤矿安全,2016,47(8):5-8.
- [9]MANGI H N,YANG D T,HAMEED N,et al.Pore structure characteristics and fractal dimension analysis of low rank coal in the Lower Indus Basin,SE Pakistan[J].Journal of Natural Gas Science and Engineering,2020,77.
- [10]LI A,DING W L,HE J H,et al.Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs:A case study of Lower Cambrian Qiongzhusi Formation in Malong block of eastern Yunnan Province,South China[J].Marine and Petroleum Geology,2016,70:46-57.
- [11]SUN W J,FENG Y Y,JIANG C F,Fractal characterization and methane adsorption features of coal Particles taken from shallow and deep coalmine layers[J].Fuel,2015,155:7-13.
- [12]YU B M.Some fractal characters of porous media[J].Fractals,2001,9(3):365-372.
- [13]LI Z T,LIU D M,CAI Y D,et al.Evaluation of coal petrophysics incorporating fractal characteristics by mercury intrusion porosimetry and low-field NMR[J].Fuel,2020,263.
- [14]FU H J,TANG D Z,XU T,et al.Characteristics of pore structure and fractal dimension of low-rank coal:A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin,NW China[J].Fuel,2017,193:254-264.
- [15]YAO Y B,LIU D M,TANG D Z,et al.Fractal characterization of seepage-pores of coals from China:An investigation on permeability of coals[J].Computers&Geosciences,2009,35(6):1159-1166.
- [16]LI Z T,LIU D M,CAI Y D,et al.Pore structure and compressibility of coal matrix with elevated temperatures by mercury intrusion porosimetry[J].Energy Exploration&Exploitationm,2015,33(6):809-826.
- [17]ALEKSEEV A D,VASILENKO T A,KIRILLOV A K.Fractal analysis of the hierarchic structure of fossil coal surface[J].Journal of Mining Science,2008,44(3):235-244.
- [18]HE Y,LIU Z,WANG S Y,et al.Study on fractal characteristis of fracture space structure and tight solid structure of coal[J].Fractals,2023,31(1).
- [19]LIU Z,HE Y,WANG W Y,et al.Experimental study on the pore structure fractals and seepage characteristics of a coal sample around a borehole in coal seam water infusion[J].Transport in Porous Media,2018,125(2):289-309.
- [20]NAVEEN P,ASIF M,OJHA K.Integrated fractal description of nanopore structure and its effect on CH 4 adsorption on Jharia coals,India[J].Fuel,2018,232:190-204.
- [21]JIN L,WANG C,LIU S X,et al.Systematic definition of complexity assembly in fractal porous media[J].Fractals,2020,28(5).
- [22]LIU G N,YU B M,YE D Y,et al.Study on fvolution of fractal dimension for fractured coal seam under multi-field coupling[J].Fractals,2020,28(4).
- [23]PAN J N,WANG K,HOU Q L,et al.Micro-pores and fractures of coals analysed by field emission scanning electron microscopy and fractal theory[J].Fuel,2016,164:277-285.
- [24]CARDOTT B J,CURTIS M E.Identification and nanoporosity of macerals in coal by scanning electron microscopy[J].International Journal of Coal Geology,2018,190:205-217.
- [25]ROSLIN A,POKRAJAC D,ZHOU Y F.Cleat structure analysis and permeability simulation of coal samples based on micro-computed tomography (micro-CT) and scan electron microscopy (SEM)technology[J].Fuel,2019,254.
- [26]TRIPATHY A,KUMAR A,SRINIVASAN V,et al.Fractal analysis and spatial disposition of porosity in major indian gas shales using low-pressure nitrogen adsorption and advanced image segmentation[J].Journal of Natural Gas science and Engineering,2019,72.
- [27]WANG G,QIN X J,SHEN J N,et al.Quantitative analysis of microscopic structure and gas seepage characteristics of low-rank coal based on CT three-dimensional reconstruction of CT images and fractal theory[J].Fuel,2019,256.
- [28]WASHBURN E W.The dynamics of capillary flow[J].Physical Review,1921,17(3):273-273.
- [29]FRIESEN W I,MIKULA R J.Fractal dimensions of coal particles[J].Journal of Colloid and Interface Science,1987,120(1):263-271.
- [30]程远平,胡彪.基于煤中甲烷赋存和运移特性的新孔隙分类方法[J].煤炭学报,2023,48(1):212-225.
- [31]SU X Y,FENG Z C,CAI T T,et al.Coal vermeability variation during the heating process considering ehermal expansion and desorption shrinkage[J].Adsorption Science&Technology,2022,2022.
- [32]WANG H Y,LI J L,DONG Z H Z,et al.Effect of thermal damage on the pore-fracture system during coal spontaneous combustion[J].Fuel,2023,339.