考虑裂隙迂曲度与滑脱效应的瓦斯多场开采评估预测Assessment and Prediction for Multi-field Gas Extraction Considering Conditions of Fracture Tortuosity and Slippage Effect
常博,李伟,刘彦青,赵尤信,朱澍成,李瑞卿
摘要(Abstract):
煤层裂隙作为瓦斯运移的主要通道,其变化受地应力和瓦斯渗流等因素的影响,进而直接影响到瓦斯的抽采效率。本研究基于裂隙网络幂律分布特性,提出了一种适用于多场耦合条件下的煤层瓦斯开采流-固耦合模型。该模型依据多孔介质强度理论创新性地引入了裂隙幂律指数、裂隙长度最值比和最大裂隙长度来定量描述煤岩裂隙结构。通过有限元分析得出以下主要结论:将瓦斯渗流模拟结果与现场数据进行对比,使得模型的准确性得到了验证;滑脱效应和裂隙迂曲度对渗透率有重要影响;裂隙幂律指数、裂隙长度最值比和最大裂隙长度能够从不同角度对裂隙行为进行量化分析,最大裂隙长度对裂隙渗透率的影响最为显著。
关键词(KeyWords): 裂隙迂曲度;滑脱效应;多场耦合;瓦斯开采
基金项目(Foundation): 煤炭科学技术研究院重点项目天地科技创新创业资金专项(2024-TD-ZD011-01)
作者(Author): 常博,李伟,刘彦青,赵尤信,朱澍成,李瑞卿
参考文献(References):
- [1]袁亮.我国深部煤与瓦斯共采战略思考[J].煤炭学报,2016, 41(1):1-6.
- [2]谢和平,任世华,谢亚辰,等.碳中和目标下煤炭行业发展机遇[J].煤炭学报,2021, 46(7):2197-2211.
- [3]谢和平,吴立新,郑德志.2025年中国能源消费及煤炭需求预测[J].煤炭学报,2019,44(7):1949-1960.
- [4]林柏泉.含瓦斯煤体渗透率的探讨[J].煤矿安全,1988(12):15-20,65.
- [5]吴海飞.各向异性效应下煤体瓦斯抽采多场耦合渗流特性研究[D].安徽淮南:安徽理工大学,2024.
- [6]程波.含瓦斯煤渗流模型的研究现状及发展方向[J].矿业安全与环保,2017, 44(5):93-97.
- [7]PALMER I, MANSOORI J. How permeability depends on stress and pore pressure in coalbeds:anew model[J]. SPE reservoir evaluation&engineering, 1998, 1(6):539-544.
- [8]LIU H, RUTQVIST J. A new coal-permeability model:internal swelling stress and fracture–matrix interaction[J]. Transport in Porous Media, 2010, 82:157-171.
- [9]刘清泉,程远平,李伟,等.深部低透气性首采层煤与瓦斯气固耦合模型[J].岩石力学与工程学报,2015, 34(S1):2749-2758.
- [10]GU F, CHALATURNYK R. Permeability and porosity models considering anisotropy and discontinuity of coalbeds and application in coupled simulation[J]. Journal of Petroleum Science and Engineering,2010, 74(3-4):113-131.
- [11]CONNELL L D, LU M, PAN Z. An analytical coal permeability model for tri-axial strain and stress conditions[J]. International Journal of Coal Geology, 2010, 84(2):103-114.
- [12]LOU Z, WANG K, ZANG J, et al. Effects of permeability anisotropy on coal mine methane drainage performance[J/OL]. Journal of Natural Gas Science and Engineering, 2021.https://doi.org/10.1016/j.jngse.2020.103733.
- [13]茹忠亮,简阔,马国胜.考虑Klinkenberg效应的多孔介质气体渗流模型[J].中国科技论文,2018, 13(3):310-313.
- [14]XIA T, GAO F, KANG J, et al. A fully coupling coal-gas model associated with inertia and slip effects for CBM migration[J].Environmental Earth Sciences, 2016, 75(7):1-10.
- [15]张民波,王子超,闫瑾,等.基于Klinkenberg效应下双渗透模型瓦斯运移规律研究[J].煤炭工程,2023, 55(5):116-122.
- [16]裴雪皓,刘月田,林子愉,等.多孔介质各向异性动态渗透率模型[J].石油勘探与开发,2024, 51(1):173-181.
- [17]朱定桂,施成华,孙晓贺,等.考虑迂曲度的水泥-水玻璃双液浆柱形渗透机制研究[J].铁道科学与工程学报,2023, 20(5):1800-1809.
- [18]KONG X, WANG E, LIU Q, et al. Dynamic permeability and porosity evolution of coal seam rich in CBM based on the flow-solid coupling theory[J]. Journal of Natural Gas Science and Engineering,2017, 40:61-71.
- [19]LIU G, LIU J, LIU L, et al. A fractal approach to fully-couple coal deformation and gas flow[J]. Fuel, 2019, 240:219-236.
- [20]孙朋.基于孔-裂隙的煤层瓦斯抽采热-流-固耦合模型研究[J].矿业安全与环保,2024, 51(4):64-73.
- [21]SAGHAFI A, FAIZ M, ROBERTS D. CO2 storage and gas diffusivity properties of coals from Sydney Basin, Australia[J].International Journal of Coal Geology, 2007, 70(1-3):240-254.
- [22]阴昊阳,许石青,郑连军.考虑基质多尺度扩散的双孔隙介质模型[J].矿业工程研究,2021, 36(1):62-70.
- [23]YANG T, LIU Y, LIU G, et al. Investigation on concrete microstructural evolution and slope stability based on coupled fractal fluid-structure model[J]. FRACTALS(fractals), 2024, 32(3):1-16.
- [24]GE Z, ZHANG L, SUN J, et al. Fully coupled multi-scale model for gas extraction from coal seam stimulated by directional hydraulic fracturing[J/OL]. Applied Sciences, 2019. https://doi. org/10.3390/app9214720.
- [25]王登科,唐家豪,魏建平,等.煤层瓦斯多机制流固耦合模型与瓦斯抽采数值模拟分析[J].煤炭学报,2023, 48(2):763-775.