两淮煤田煤储层吸附孔孔隙结构及分形特征Coal Reservoir Adsorptive Pore Structural and Fractal Features in Huainan and Huaibei Coalfields
姚铭檑,邵龙义,侯海海,李振,赵升,唐跃
摘要(Abstract):
为了定量表征两淮煤田(淮南和淮北煤田)煤储层吸附孔孔隙结构特征,基于低温氮气吸附实验数据及FHH模型计算了吸附孔分形维数D_1(相对压力0~0.5)和D_2(相对压力0.5~1),讨论了分形维数与孔隙结构、物质组成以及煤变质程度之间的关系。结果表明,研究区煤样低温氮气吸附回线可以划分为3类:Ⅰ类,孔隙以"墨水瓶"或"细瓶颈"形孔为主,煤样具有比表面积大、平均孔径小的特点;Ⅱ类,孔隙多为开放性较好的平行板状孔,煤样比表面积和总孔体积较低;Ⅲ类,孔隙以狭缝形孔为主,煤样总孔体积和平均孔径较大。D_1与比表面积呈较强的正相关关系,代表孔表面积分形维数,D_2和平均孔径、微孔含量分别呈高度的线性正相关和负相关,代表孔结构分形维数,不同吸附脱附曲线类型煤样的分形维数D_1呈现出Ⅰ类>Ⅲ类>Ⅱ类的规律,D_2则呈现出Ⅰ类>Ⅱ类>Ⅲ类的规律,D_1、D_2与水分、灰分均呈正线型相关,与煤的R_(o,max)的关系并不明显。
关键词(KeyWords): 两淮煤田;煤储层;低温氮气;孔隙特征;分形维数
基金项目(Foundation): 中国地质调查局科研项目(1212011220794);中国地质调查局科研项目(DD20160204-YQ17W01);; 国家科技重大专项(2016ZX05041004-003)联合资助
作者(Author): 姚铭檑,邵龙义,侯海海,李振,赵升,唐跃
参考文献(References):
- [1]窦新钊,朱文伟,俞显忠,等.安徽两淮地区煤层气勘探开发现状及建议[J].安徽地质,2015,(02):115-118.
- [2]王战锋.低渗松软煤层地面煤层气开发试验及评价--以淮北矿区芦岭煤矿为例[J].中国煤炭地质,2013,25(6):20-23.
- [3]桑树勋,朱炎铭,张时音,等.煤吸附气体的固气作用机理(I)—煤孔隙结构与固气作用[J].天然气工业,2005,25(1):13-15.
- [4]Mendhe V A,Bannerjee M,Varma A K,et al.Fractal and pore dispositions of coal seams with significance to coalbed methane plays of East Bokaro,Jharkhand,India[J].Journal of Natural Gas Science and Engineering,2017,38:412-433.
- [5]Yao Yanbin,Liu Dameng,Tang Dazhen,et al.Fractal characterization of adsorption-pores of coals from North China:An investigation on CH4 adsorption capacity of coals[J].International Journal of Coal Geology,2008,73(1):27-42.
- [6]高迪,刘建国.沁水盆地东南部高阶煤孔隙分形特征及意义[J].河南理工大学学报(自然科学版),2017,36(2):7-15.
- [7]敖卫华.淮南煤田深部煤层煤级与煤体结构特征及煤变质作用[D].中国地质大学(北京),2013.
- [8]宋立军,李增学,吴冲龙,等.安徽淮北煤田二叠系沉积环境与聚煤规律分析[J].煤田地质与勘探,2004,32(5):1-3.
- [9]兰昌益.淮南煤田二叠纪含煤岩系的沉积环境[J].淮南矿业学院学报,1984(2):13-25.
- [10]Brunauer S,Emmett P H,Teller E.Adsorption of gases in multimolecular layers[J].Journal of the American Chemical Society,1938,60(2):309-319.
- [11]Barret E P,Joyner L G,Halenda P P.The determination of pore volume and area distribution in porous substances.I.Computations from nitrogen isotherms[J].Journal of American Chemical Society,1951,73(1):373-380.
- [12]姚艳斌,刘大锰,黄文辉,等.两淮煤田煤储层孔-裂隙系统与煤层气产出性能研究[J].煤炭学报,2006,31(2):163-168.
- [13]B.B霍多特.煤与瓦斯突出[M].宋世钊,王佑安,译.北京:中国工业出版社,1966:27-30.
- [14]Sing K S W.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity(Recommendations 1984)[J].Pure and Applied Chemistry,1985,57(4):603-619.
- [15]Mandelbrot B B.Stochastic models for the Earth’s relief,the shape and the fractal dimension of the coastlines,and the number-area rule for islands[J].Proceedings of the National Academy of Sciences,1975,72(10):3825-3828,
- [16]Pfeifer P,Wu Y J,Cole M W,et al.Multilayer adsorption on a fractally rough surface[J].Physical Review Letters,1989,62(17):1997-2000.
- [17]Pfeifer P,Cole M W,Krim J.Pfeifer,Cole,and Krim reply[J].PhysicalReviewLetters,1990,65(5):663.
- [18]Lai Jin,Wang Guiwen.Fractal analysis of tight gas sandstones using high-pressure mercury intrusion techniques[J].Journal of Natural Gas Science and Engineering,2015,24:185-196.
- [19]Hou Haihai,Shao Longyi,Li Yonghong,et al.The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield,northern Qaidam Basin,northwestern China[J].Frontiers of Earth Science,2018,12(1):148-159.
- [20]谢和平.分形-岩石力学导论[M].北京:科学出版社,1996:93-95.
- [21]Pyun S I,Rhee C K.An investigation of fractal characteristics of mesoporous carbon electrodes with various pore structures[J].Electrochimica Acta,2004,49(24):4171-4180.
- [22]Mahnke M,Mgel H J.Fractal analysis of physical adsorption on material surfaces[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003,216(1-3):215-228.
- [23]李增学.煤地质学[M].北京:地质出版社,2009:131-132.
- [24]赵兴龙,汤达祯,许浩,等.煤变质作用对煤储层孔隙系统发育的影响[J].煤炭学报,2010,35(9):1506-1511.