基于FLAC3D数值模拟的砂岩顶板导水裂隙带高度及突水性研究Research on the Height and Water in Rush Behavior of Water Conducted Zones in Sandstone Roof Based on FLAC3D Numerical Simulation
汪有清,吴明,王猛,刘卞禹,王阳
摘要(Abstract):
随着开采深度的不断增加,新集二矿1煤组开采活动引起上覆厚层坚硬砂岩岩层的断裂变形现象可能威胁矿井的安全生产。为研究新集二矿煤层深部开采条件下的“上三带”发育规律以及突水危险性,以新集二矿2401采区为研究对象,对新集二矿构造地质条件、水文地质条件进行了详细剖析,确定了1煤组煤层顶板含水层的充水条件;利用经验公式和数值模拟手段预测了2401采区1上煤层回采过程中导水裂隙带发育高度;在此基础上分析了回采后煤层顶板突水危险性,结果表明新集二矿上覆推覆体含水层对2401采区的开采基本不产生影响,影响采区开采的主要充水水源为1煤组顶板砂岩水及1煤组底板太原组灰岩裂隙水,对采后涌水量进行了准确预测;含水层富水性受断层及裂隙发育影响,需利用瞬变电磁物探手段对顶板砂岩富水性进行探查,圈定顶板砂岩富水区并对底板灰岩进行超前探测,查明底板灰岩构造及水文地质特征。通过研究认为数值模拟方法对研究导水裂隙带发育高度和矿井突水预测有一定理论参考价值,也可对煤矿安全生产提供较高的参考价值。
关键词(KeyWords): 导水裂隙带;数值模拟;顶板水害;FLAC~(3D);新集二矿
基金项目(Foundation): 国家自然科学基金项目(52274103)
作者(Author): 汪有清,吴明,王猛,刘卞禹,王阳
参考文献(References):
- [1]HU Y,LI W,WANG Q,et al. Evolution of floor water inrush from a structural fractured zone with confined water[J]. Springer Science and Business Media LLC,2019,38(2):252-260.
- [2]张培森,朱慧聪,吴玉华,等.我国煤矿离层涌突水致灾机理及其防控关键技术研究进展[J].工程地质学报,2021,29(4):1057-1070.ZHANG P,ZHU H,WU Y,et al. State of the Art of Mechanism of Water Inrush From Bed Separation and Key Technology of Prevention and Pre-Control in China[J]. Journal of Engineering Geology,2021,29(4):1057-1070.
- [3]张勃阳,张宇科,黄虎威,等.基于相似模拟试验的顶板导水裂隙带高度及发育形态研究[J].河南理工大学学报(自然科学版),2024,43(4):29-38.ZHANG B Y,ZHANG Y K,HUANG H W,et al. Study on height and development form of roof water flowing fractured zone based on similar simulation test[J]. Journal of Henan Polytechnic University(Natural Science),2024,43(4):29-38.
- [4]田超.东曲煤矿28806综采面导水裂隙带高度研究[J].煤炭科技,2019,40(4):13-15.TIAN C. Study on height of water-conducting fracture zone in 28806fully-mechanized face of dongqu coal mine[J],Coal Science&Technology Magazine,2019,40(4):13-15.
- [5]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M].北京:煤炭工业出版社,2000.
- [6]宋常胜,郝宇,孙恒山.告成矿滑动构造下导水裂隙带高度分析[J].河南理工大学学报(自然科学版),2020,39(4):1-11.SONG C,HAO Y,SUN H. Analysis on the height of water flowing fractured zone under sliding structure in Gaocheng coal mine[J].Journal of Henan Polytechnic University(Natural Science),2020,39(4):1-11.
- [7]PALCHIK V. Analysis of main factors influencing the apertures of mining-induced horizontal fractures at longwall coal mining[J].Springer Science and Business Media LLC,2020,6(2):1-11.
- [8]杨伟强,郭文兵,赵高博,等.基于岩层挠曲变形的“竖三带”理论判别方法及工程应用[J].煤炭科学技术,2022,50(10):42-50.YANG W,GUO W,ZHAO G,et al. Theoretical judgement method of overburden“three-zone”based on rock strata deflection deformation and its engineering application[J]. Coal Science and Technology,2022,50(10):42-50.
- [9]于广明,分形及损伤力学在矿山开采沉陷中的应用研究[J].岩石力学与工程学报,1999(2):123-124.YU G. Application research of fractal and damage mechanics in mining subsidence[J],Chinese Journal of Rock Mechanics and Engineering,1999(2):123-124.
- [10]李振华,丁鑫品,程志恒.薄基岩煤层覆岩裂隙演化的分形特征研究[J].采矿与安全工程学报,2010,27(4):576-580.LI Z,DING X,CHENG Z. Research on fractal characteristics of overlying strata crack evolution in coal seam with thin bedrock[J].Journal of Mining&Safety Engineering,2010,27(4):576-580.
- [11]刘志高,张守宝,皇甫龙.腾达煤矿倾斜煤层覆岩运移规律及“上三带”高度的确定[J].采矿与岩层控制工程学报,2022,4(3):70-79.LIU Z,ZHANG S,HUANGFU L. Overburden migration law of inclined coal seam and determination of“upper three zones”height in Tengda Coal Mine[J]. Journal of Mining and Strata Control Engineering,2022,4(3):70-79.
- [12]王永国,王明,许蓬.巴彦高勒煤矿3-1煤层顶板垮落裂缝带发育特征[J].煤田地质与勘探,2019,47(S1):37-42.WANG Y,WANG M,XU P. Characteristics of collapsed fractured zone development of No. 3-1seam roof in Bayangaoler coal mine[J]. Coal Geology&Exploration,2019,47(S1):37-42.
- [13]余学义,王昭舜,杨云,等.大采深综放开采覆岩移动规律离散元数值模拟研究[J].采矿与岩层控制工程学报,2021,3(1):28-38.YU X,WANG Z,YANG Y,et al. Numerical study on the movement rule of overburden in fully mechanized caving mining with thick depth and high mining height[J]. Journal of Mining and Strata Control Engineering,2021,3(1):28-38.
- [14]PANG L,LIU W,QIN Y. Analysis of main controlling dactors of overburden failure in coal mining under thick coal seam geological conditions[J]. Springer Science and Business Media LLC. 2020,39(2):883-896.
- [15]GUO L. Research on the settlement and deformation law of overlying rock under the influence of mining[J]. Academic Journal of Engineering and Technology Science,2020,3(5):131-141.
- [16]傅大庆.大井法及水文地质比拟法在某矿山矿坑涌水量预测中的应用对比[J].西部探矿工程,2016,28(1):139-141.FU D. Comparison of the application of big well method and hydrogeological analogy method in predicting water inflow in a mine pit[J]. West-China Exploration Engineering,2016,28(1):139-141.
- [17]贺晓浪,蒲治国,丁湘,等.矿井涌水量预测方法的改进及结果准确性判定[J].煤炭科学技术,2020,48(8):229-236.HE X,PU Z,DING X,et al. Improved methods for prediction of mine water inflow and determination of accuracy of results[J]. Coal Science and Technology,2020,48(8):229-236.
- [18]黄望望,姜春露,陈星,等.淮南新集矿区主要充水含水层水化学特征及成因[J].地球与环境,2020,48(4):432-442.HUANG W,JIANG C,CHEN X,et al. Chemical characteristics and genesis of deep groundwater in the Xinji mining area[J]. Earth and Environment,2020,48(4):432-442.
- [19]王沙沙,宋宝来,林礼祺.新集煤矿地质构造发育特征及充水因素分析[J].教育教学论坛,2016(44):106-107.WANG S, SONG B, LIN L. Analysis of geological structure development and water filling factors in Xinji coalmine[J]. Education Teaching Forum,2016(44):106-107.
- [20]赵春永.淮南新集二矿井田水文地质条件分析及矿井涌水量预测[D].江苏南京:南京大学,2018.ZHAO Y. Analysis of hydrogeological conditions and prediction of mine water inflow in Huainan Xinji second mine[D]. NanJing,Jiangsu:Nanjing University,2018.
- [21]卜庆林,陈成星,杨成超,等.煤层顶板岩层富水性分区指标及其涌水量预测[J].山东科技大学学报(自然科学版),2005(3):28-31.BU Q,CHEN C,YANG C,et al. Zoning index of rich water-bearing roof strata and water inrush forecasting in coal seams[J]. Journal of Shandong University of Science and Technology(Natural Science),2005(3):28-31.