探地雷达图像异常检测方法研究及应用Research and Application of Anomaly Detection Method for GPR Image
许明,张弓,王广涛,骆庚,郑睿博
摘要(Abstract):
探地雷达技术广泛应用于城市道路病害探测领域。道路异常检测通常需要人工目视解译来实现,存在较强的主观性和不确定性。本文基于YOLOv5目标检测算法进行设计改进,提出了一种探地雷达图像道路空洞异常检测的方法。该方法添加了一个微小目标特征检测的预测头,并引入卷积块注意力模块和高效的交并比损失函数。模型不仅迭代收敛快、回归精度高,还优化了边界框回归任务的样本不均衡问题。通过消融实验表明,改进后的方法在道路空洞检测应用中检测精度明显得到提升,平均精度均值由81.62%提升到83.90%,对道路空洞病害异常的检测效果有很大提升。
关键词(KeyWords): 探地雷达;目标检测;注意力机制
基金项目(Foundation): 中国煤炭地质总局项目(ZMKJ-2022-JBGS03)
作者(Author): 许明,张弓,王广涛,骆庚,郑睿博
参考文献(References):
- [1]SATO M,FUJIWARA J,FENG X,et al.GPR development for landmine detection[J].Geophysics and Geophysical Exploration,2005,8(4):270-279.
- [2]GIRSHICK R.Fast r-cnn[C].Proceedings of the IEEE International Conference on Computer Vision,2015:1440-1448
- [3]REN S,HE K,GIRSHICK R,et al.Faster r-cnn:Towards real-time object detection with region proposal networks[C].Advances in Neural Information Processing Systems,2015:28.
- [4]LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C].arXiv:1512.02325,2015.
- [5]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788.
- [6]REDMON J,FARHADI A.Yolov3:An incremental improvement[C].arXiv,2018,1804.02767.
- [7]SONODA J,KIMOTO T.Object identification form GPR images by deep learning[C].2018 Asia Pacific Microwave Conference (APMC),2018:1298-1300.
- [8]PHAM M T,LEFEVRE S.Buried object detection from B scan ground penetrating radar data using faster-rcnn[C].IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium,2018:6804-6807.
- [9]LI Y,ZHAO Z,LUO Y,et al.Real-time pattern-recognition of GPR images with YOLOv3 implemented by tensorflow[J].Sensors,2020,20(22):6476.
- [10]ZHANG J,YANG X,LI W,et al.Automatic detection of moisture damages in asphalt pavements from GPR data with deep CNN and IRS method[J].Automation in Construction,2020,113:103-119.
- [11]ZHANG J,LU Y,YANG Z,et al.Recognition of void defects in airport runways using ground-penetrating radar and shallow CNN[J].Automation in Construction,2022,138:1-18.
- [12]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C].In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
- [13]WOO S,PARK J,LEE J,et al.Cbam:Convolutional block attention module[C].Proceedings of the European Conference on Computer Vision (ECCV),2018:3-19.
- [14]ZHU X,LYU S,WANG X,et al.TPH-YOLOv5:improved YOLOv5 based on transformer prediction head for object detection on dronecaptured scenarios[C].Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:2778-2788.
- [15]YU J,JIANG Y,WANG Z,et al.Unitbox:An advanced object detection network[C].Proceedings of the 24th ACM International Conference on Multimedia,2016:516-520.
- [16]ZHENG Z,WANG P,LIU W,et al.Distance-IoU loss:faster and better learning for bounding box regression[C].Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(7):12993-13000.
- [17]REZATOFIGHI H,TSOI N,GWAK J,et al.Generalized intersection over union:A metric and a loss for bounding box regression[C].Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition,2019:658-666.
- [18]YANG Z,WANG X,LI J.EIoU:An improved vehicle detection algorithm based on vehiclenet neural network[J].Journal of Physics:Conference Series,2021 (1).