水热条件下白云石的摩擦滑动稳定性实验研究以及对潜在地震风险的启示Experimental Study on Frictional Sliding Stability of Dolomite under Hydrothermal Conditions and Implications for Potential Earthquake Risk
何邦超,张雷
摘要(Abstract):
为了探讨含白云石断层的摩擦滑动稳定性,我们使用白云石断层泥开展了水热条件下的摩擦滑动实验研究。实验的有效正应力为60MPa,孔隙流体压力为20MPa,温度范围为25~150℃。实验过程中为了得到白云石摩擦强度系数的速度依赖性,我们将轴向加载速率在5μm/s、1μm/s、0.2μm/s和0.04μm/s之间进行切换。在本研究的温度和压力条件下,我们发现白云石断层泥表现出低温的稳定的速度强化的摩擦滑动行为向高温不稳定黏滑的转变。白云石摩擦强度系数为0.65~0.7,没有表现出显著的温度依赖性。在25~50℃的温度范围,白云石表现出稳定的速度强化的摩擦滑动行为。当温度升高到100℃时,在0.2~0.04μm/s加载速率范围内表现出速度弱化并伴随着黏滑现象,而在1~5μm/s的加载速率下表现出显著的速度强化的摩擦滑动行为。白云石的速率依赖性参数(a-b)值随温度和有效正压力的升高和加载速率的降低表现出有稳定的滑动向不稳定地震成核的转变趋势。因此,对油气储层而言,当其上覆的白云岩岩层被断层穿过时,其在较低的温度范围内(<100℃)也具备了发生不稳定地震成核的条件,需要防范其发生诱发地震的风险。
关键词(KeyWords): 摩擦滑动稳定性;摩擦强度系数;不稳定地震成核
基金项目(Foundation): 国家重点研发项目“川滇地区活动断裂三维公共模型与大震危险性研究”(2021YFC3000603)
作者(Author): 何邦超,张雷
参考文献(References):
- [1]DIETERICH J. Modeling of rock friction experimental results and constitutive equations[J]. 1979,84:2161-2168.
- [2] RUINA A. Slip instability and state variable friction law[J]. J Geophys Res.,1983,88(B12):10359-10370.
- [3]DIETERICH J. A model for the nucleation of earthquake slip,in Earthquake Source Mechanics[M]. DAS S,BOATWRIGHT J,SCHOLZ C H. Washington D C:American Geophysical Union,1986:37-47.
- [4] DIETERICH J. Earthquake nucleation on faults with rate-and state-dependent strength[J]. 1992,19:1691-1694.
- [5]TSE S T,RICE J. Crustal earthquake instability in relation to the depth variation of frictional slip properties[J]. Journal of Geophysical Research:Solid Earth,1986,91(B9):9452-9472.
- [6] RICE J,RUINA A. Stability of Steady Frictional Slipping[J].Journal of Applied Mechanics,1983,50(2):343-349.
- [7]GU J,RICE J,RUINA A,et al. Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction[J]. Journal of Geophysics Research,1984,32(3):167-196.
- [8]SCHOLZ C. Earthquakes and friction laws[J],Nature,1998,391(6662):37-42.
- [9]RUBIN A,AMPUERO J P. Earthquake nucleation on(aging)rate and state faults[J]. J. Geophys. Res.,2005,110(B11),B11312.
- [10]GELUK M C. Late Permian(Zechstein)carbonate-facies maps the Netherlands[J]. Geol. Netherl. J. Geosci.,2000,79:17-27.
- [11]GELUK M C. Permian Geology of the Netherlands[M]. Royal Netherlands Academy of Arts and Sciences,Amsterdam,2007:63-84.
- [12]ALSHARHAN A S,NAIRN A E M. The late Permian carbonates(Khuff Formation)in the western Arabian Gulf:Its hydrocarbon parameters and paleogeographical aspects[J]. Carbonates Evaporites,1994,9:132-142.
- [13] BAI G, XU Y. Giant fields retain dominance in reserves growth[J]. Oil Gas J.,2014,112.
- [14]SMITH S A,SORENSEN J A,STEADMAN E N,et al. Zama acid gas EOR,CO2sequestration,and monitoring project[J]. Energy Procedia,2011,4:3957-3964.
- [15] BENNION B, BACHU S. Drainage and imbibition relative permeability relationships for supercritical CO2/Brine and H2S/Brine systems in intergranular Sandstone,carbonate,shale,and anhydrite rocks[J]. SPE Reserv. Eval. Eng.,2013,11:487-496.
- [16]唐雪松,谭秀成,刘宏,等.四川盆地东部中二叠统茅口组白云岩及云质硅岩储层特征与发育规律[J].石油与天然气地质,2016,37(5):731-743.
- [17]云露,曹自成.塔里木盆地顺南地区奥陶系油气富集与勘探潜力[J].石油与天然气地质,2014,35(6):788-797.
- [18]李映涛,叶宁,袁晓宇,等.塔里木盆地顺南4井中硅化热液的地质与地球化学特征[J].石油与天然气地质,2015,36(6):934-944.
- [19]漆立新.塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J].中国石油勘探,2016,21(3):38-51.
- [20] MIRABELLA F, BARCHI M R, LUPATTELLI A. Seismic reflection data in the umbria marche region:limits and capabilities to unravel the subsurface structure in a seismically active area[J]. Ann.Geophys,2008,51.
- [21]COLLETTINI C,DE PAOLA N,FAULKNER D R. Insights on the geometry and mechanics of the Umbria-Marche earthquakes(Central Italy)from the integration of field and laboratory data[J].Tectonophysics,2009,476:99-109.
- [22] SPERANZA F, MINELLI L. Ultra-thick Triassic dolomites control rupture behaviour of the central Apennine seismicity:evidence from magnetic modelling of the L'Aquila fault zone[J]. J. Geophys.Res. Solid Earth,2014,119:6756-6770.
- [23]HE C,WANG Z,YAO W. Frictional sliding of gabbro gouge under hydrothermal conditions[J]. Tectonophysics,2007,445(3-4):353-362.
- [24]VERBERNE B A,HE C,SPIERS C J. Frictional properties of sedimentary rocks and natural fault gouge from the Longmenshan fault zone,Sichuan,China[J]. Bull. Seismol. Soc. Am.,2010,100:2767-2790.
- [25]NIEMEIJER A R,COLLETTINI C. Frictional properties of a lowangle normal fault under in situ conditions:thermally-activated velocity weakening[J]. Pure Appl. Geophys.,2020:2641-2664.
- [26]VERBERNE B A,SPIERS C J,NIEMEIJER A,et al. Frictional properties and microstructures of calcite-rich fault gouges sheared at subseismic sliding velocities[J]. Pure Appl. Geophys,2013:1-24.
- [27] Verberne B A, Niemeijer AR, De Bresser J H P, et al.Mechanical behavior and microstructure of simulated calcite fault gouge sheared at 20-600℃:Implications for natural faults in limestones[J].J. Geophys. Res. Solid Earth,2015,120(12):8169-8196.
- [28] CHEN J,VERBERNE B A,SPIERS C J. Interseismic restrengthening and stabilization of carbonate faults by“non-Dieterich”healing under hydrothermal conditions[J]. Earth Planet. Sci. Lett.,2015,423:1-12.
- [29] PLUYMAKERS A M H, NIEMEIJER A R, SPIERS C J.Frictional properties of simulated anhydrite-dolomite fault gouge and implications for seismogenic potential[J]. Journal of Structural Geology,2016,84:31-46.
- [30]CHEN J, SPIERS C J. Rate and state frictional and healing behavior of carbonate fault gouge explained using microphysical model[J]. Journal of Geophysical Research:Solid Earth,2016,121(12):8642-8665.
- [31]NIEMEIJER A R,SPIERS C J. A microphysical model for strong velocity weakening in phyllosilicate-bearing fault gouges[J]. Journal of Geophysical Research,2007,112(B10).