导水裂隙带发育高度的精细刻画技术研究Research on High-precision Characterization Technology for the Development Height of Water Conducted Zones
冯健,张彪,师素珍,康玉国
摘要(Abstract):
为对导水裂隙带发育高度进行高精度定量化全空间预测,提出了一种将多元回归分析与波形指示反演相结合的导水裂隙带发育高度预测方法。分析了采高、煤层底板埋深、工作面跨度以及硬岩比例系数与导水裂隙带发育高度之间的内在联系,并通过多元回归分析建立了黄陇煤田导水裂隙带发育高度预测数学模型,模型相关系数为96.7。利用波形指示反演精细解释了煤层上覆岩层的岩性展布形态,并基于钻孔数据验证了解释成果。基于解释成果结合煤矿开采设计参数应用预测数学模型实现了导水裂隙带发育高度全空间精细刻画。钻孔DT1和DT2通过地面钻孔分段注水试验和窥视方法,测得导水裂隙带发育高度分别为327.7 m和197.85 m。预测结果与实测相比,误差均小于10 m。
关键词(KeyWords): 地震波形指示反演;导水裂隙带;顶板突水;煤矿开采
基金项目(Foundation): 中央高校基本科研业务费专项(2022JCCXMT01);; 煤炭资源与安全开采国家重点实验室开放基金项目(SKLCRSM19ZZ02);; 中国煤炭地质总局揭榜挂帅项目(ZMKJ-2023-JBGS01)
作者(Author): 冯健,张彪,师素珍,康玉国
参考文献(References):
- [1]郭小铭,王皓,周麟晟.煤层顶板巨厚基岩含水层空间富水性评价[J].煤炭科学技术,2021,49(9):167-175.
- [2] ZHANG B S, YANG Z P, JI C X, et al. Research on the influence of the key stratum position on the support working resistance during large mining height top-coal caving mining[J/OL]. Advances in Civil Engineering, 2021. https://doi.org/10.1155/2021/6690280.
- [3]李超峰.黄陇煤田综放采煤顶板导水裂缝带高度发育特征[J].煤田地质与勘探,2019,47(2):129-136.
- [4] CHENG J L, LI F, PENG S P, et al. Joint inversion of TEM and DC in roadway advanced detection based on particle swarm optimization[J]. Journal of Applied Geophysics, 2015, 123:30-35.
- [5] CHANG J H, YU J C, LIU Z X. Three-dimensional numerical modeling of full-space transient electromagnetic responses of water in goaf[J]. Applied Geophysics, 2016, 13(3):539-552.
- [6] XU Z H, LI Q S, LI X B. Overburden migration and failure characteristics in mining shallow buried coal seam with thick loose layer[J]. Advances in Materials Science and Engineering, 2020(1):1-12.
- [7] LI X B, LI Q S, XU X H, et al. Multiple influence factor sensitivity analysis and height prediction of water-conducting fracture zone[J/OL].Geofluids, 2021. https://doi.org/10.1155/2021/8825906.
- [8] WANG R, BAI J B, YAN S, et al. Structure partition and reasonable width determination of waterproof coal pillar in strip mining[J/OL]. Lithosphere, 2021. https://doi.org/10.2113/2021/3339797.
- [9]全国自然资源与国土空间规划标准化技术委员会.矿区水文地质工程地质勘探规范:GB/T 12719—2021[S].
- [10]国家安全监管总局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M].北京:煤炭工业出版社,2017:54-59.
- [11]程磊,罗辉,李辉,等.近年来煤矿采动覆岩导水裂隙带的发育高度的研究进展[J].科学技术与工程,2022,22(1):28-38.
- [12]许家林,朱卫兵,王晓振.基于关键层位置的导水裂隙带高度预计方法[J].煤炭学报,2012,37(5):762-769.
- [13]张建民,张凯,曹志国,等.基于采动-爆裂模型的导水裂隙带高度计算方法[J].煤炭学报,2017,42(6):1557-1564.
- [14] LIU Y, YUAN S C, YANG B B, et al. Predicting the height of the water-conducting fractured zone using multiple regression analysis and GIS[J/OL]. Environmental Earth Sciences, 2019. https://doi. org/10.1007/s12665-019-8429-3.
- [15] XU H C, LAI X P, ZHANG S, et al. Multiscale intelligent inversion of water-conducting fractured zone in coal mine based on wlastic modulus calibration rate response and its application:a case study of Ningdong mining area[J/OL]. Lithosphere, 2021. https://doi.org/10.2113/2021/7657143.
- [16]杨达明,郭文兵,赵高博,等.厚松散层软弱覆岩下综放开采导水裂隙带发育高度[J].煤炭学报,2019,44(11):3308-3316.
- [17]赵春虎,靳德武,王皓,等.榆神矿区中深煤层开采覆岩损伤变形与含水层失水模型构建[J].煤炭学报,2019,44(7):2227-2235.
- [18]代革联,薛小渊,牛超,等.煤炭开采对相邻区域生态潜水流场扰动特征[J].煤炭学报,2019,44(3):701-708.
- [19] CHEN J T, ZHAO J H, ZHANG S C, et al. An experimental and analytical research on the evolution of mining cracks in deep floor rock mass[J]. Pure and Applied Geophysics, 2020, 177(11):5325-5348.
- [20] LI X B, HE W R, XU Z H. Study on law of overlying strata breakage and migration in downward mining of extremely close coal seams by physical similarity simulation[J/OL]. Advances in Civil Engineering, 2020. https://doi.org/10.1155/2020/2898971.
- [21]杨鹏,杨伟峰,张鑫全,等.基于信息熵的采动覆岩应力动态演化与水害辨识[J].煤炭学报,2021,46(9):3006-3014.
- [22] ZHANG D Y, SUI W H, LIU J W. Overburden failure associated with mining coal seams in close proximity in ascending and descending sequences under a large water body[J]. Mine Water and the Environment, 2018,37(2):322-335.
- [23] LAI X P, LIU B W, SHAN P F, et al. Study on the prediction of the height of two zones in the overlying strata under a strong shock[J/OL]. Geofluids, 2021. https://doi.org/10.1155/2021/4237061.
- [24] WANG X H, ZHU S Y, YU H T, et al. Comprehensive analysis control effect of faults on the height of fractured water-conducting zone in longwall mining[J]. Natural Hazards, 2021, 108(2):2143-2165.
- [25] MIAO X X, CUI X M, WANG J A, et al. The height of fractured water-conducting zone in undermined rock strata[J]. Engineering Geology, 2011,120(1-4):32-39.
- [26] SU B Y, YUE J H. Research of the electrical anisotropic characteristics of water-conducting fractured zones in coal seams[J].Applied Geophysics, 2017, 14(2):216-224.
- [27]袁峰,申涛,谢晓深,等.基于深度学习的地震多属性融合技术在导水裂隙带探测中的应用"[J].煤炭学报,2021,46(10):3234-3244.
- [28]李楠,王恩元,GE Mao-chen.微震监测技术及其在煤矿的应用现状与展望[J].煤炭学报,2017,42(S1):83-96.
- [29]柴敬,霍晓斌,钱云云,等.采场覆岩变形和来压判别的分布式光纤监测模型试验[J].煤炭学报,2018,43(S1):36-43.
- [30]冯健,张彪,师素珍,等.黄陇煤田厚层砂岩水害精准注浆防治水技术研究[J].煤炭科学技术,2023,51(S1):256-264.
- [31]李超峰,虎维岳,刘英锋.洛河组含水层垂向差异性研究及保水采煤意义[J].煤炭学报,2019,44(3):848-857.
- [32]胡小娟,李文平,曹丁涛,等.综采导水裂隙带多因素影响指标研究与高度预计[J].煤炭学报,2012,37(4):613-620.
- [33]柴华彬,张俊鹏,严超.基于GA-SVR的采动覆岩导水裂隙带高度预测[J].采矿与安全工程学报,2018,35(2):359-365.
- [34]周优,张松航,唐书恒,等.柿庄南区块3号煤层含气量三维建模[J].煤田地质与勘探,2020,48(1):96-104.
- [35]李博,吴煌,李腾.基于加权的综采导水裂隙带高度多元非线性回归预测方法研究[J].采矿与安全工程学报,2022,39(3):536-545.
- [36]胡小娟,刘瑞新,胡东祥,等.导水裂隙带的影响因素研究与高度预计[J].煤矿现代化,2012(3):49-53.
- [37] CHEN Y H, BI J J, QIU X B, et al. A method of seismic meme inversion and its application[J]. Petroleum Exploration and Development, 2020, 47(6):1235-1245.