不同粒度构造煤的孔分形特征研究Research on Pore Fractal Characteristics of Tectonic Coal with Different Particle Sizes
侯世辉,王小明,李丹阳,党正
摘要(Abstract):
为分析不同粒度构造煤的孔分形特征,采集河南省平顶山煤田东部十矿构造煤样品,破碎筛分成不同的粒度区间:1.0~0.5 mm、0.50~0.25 mm、0.25~0.15 mm、0.15~0.09 mm、0.09~0.075 mm,进行低压N_2吸附测试。根据分形FHH理论,通过低压N_2吸附的p/p_0<0.45、p/p_0≥0.45区间分别确定分形维数D_1、D_2,表征孔表面形态粗糙度、孔结构规则性。结果表明,不同粒度构造煤具有不同的分形维数,D_1、D_2的变化范围分别为2.616 6~2.778 9,2.499 7~2.553 7。平均孔径是影响分形维数的重要参数,平均孔径降低,D_1减小(孔表面形态越平滑),D_2增加(孔结构越不规则);2~5 nm孔是控制分形维数的关键指标,2~5 nm孔增多,D_1减小,D_2增加。研究成果可为构造煤的吸附性分析和安全开采提供理论参考。
关键词(KeyWords): 构造煤;煤粒度;分形维数;FHH理论;低压N_2吸附
基金项目(Foundation): 国家自然科学基金项目(42262022,41972184)
作者(Author): 侯世辉,王小明,李丹阳,党正
参考文献(References):
- [1] LI Y,WANG Z,PAN Z,et al. Pore structure and its fractal dimensions of transitional shale:A cross-section from east margin of the Ordos Basin,China[J]. Fuel,2019,241:417-431.
- [2]ZHU J,LIU J,Yang Yumeng,et al. Fractal characteristics of pore structures in 13 coal specimens:Relationship among fractal dimension,pore structure parameter,and slurry ability of coal[J]. Fuel Processing Technology,2016,149:256-267.
- [3] YAO Y,LIU D,TANG D,et al. Fractal characterization of adsorption-pores of coals from North China:An investigation on CH4adsorption capacity of coals[J]. International Journal of Coal Geology,2008,73:27-42.
- [4] Pyun Su-Il, Rhee Chang-Kyu. An investigation of fractal characteristics of mesoporous carbon electrodes with various pore structures[J]. Electrochimica Acta,2004,49:4171-4180.
- [5]ZHANG Z,QIN Y,YI T,et al. Pore structure characteristics of coal and their geological controlling factors in eastern Yunnan and western Guizhou,China[J]. ACS Omega,2020,5:19565-19578.
- [6]邹俊超,杨政,蓝贵港,等.基于压汞、低温液氮、X射线小角散射的低阶煤储层孔隙分形特征对比[J].中国煤炭地质,2021,33(10):22-30.
- [7]刘冀蓬,胡海燕,刘德勋,等.海拉尔盆地呼和湖凹陷低阶煤孔隙分形特征研究[J].煤矿安全,2021,52(8):1-8.
- [8] XU S,ZHOU Z,YU G,et al. Effect of pyrolysis on the pore structure of four Chinese coals[J]. Energy Fuels,2010,24:1114-1123.
- [9]FU H,TANG D,XU T,et al. Characteristics of pore structure and fractal dimension of low-rank coal:A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin,NW China[J]. Fuel,2017,193:254-264.
- [10]WANG F,CHENG Y,LU S,et al. Influence of coalification on the pore characteristics of middle-high rank coal[J]. Energy Fuels,2014,28:5729-5736.
- [11]LIU X,NIE B. Fractal characteristics of coal samples utilizing image analysis and gas adsorption[J]. Fuel,2016,182:314-322.
- [12]SUN W,FENG Y,JIANG C,et al. Fractal characterization and methane adsorption features of coal particles taken from shallow and deep coalmine layers[J]. Fuel,2015,155:7-13.
- [13] LIU J, JIANG X, HUANG X, et al. Morphological characterization of super fine pulverized coal particle. Part 4. Nitrogen adsorption and small angle X-ray scattering study[J]. Energy Fuels,2010,24:3072-3085.
- [14]WANG X,DANG Z,HOU S,et al. Fractal characteristics of pulverized high volatile bituminous coals with different particle size using gas adsorption[J]. Fuel,2022,315.
- [15]WANG Z,CHENG Y,QI Y,et al. Experimental study of pore structure and fractal characteristics of pulverized intact coal and tectonic coal by low temperature nitrogen adsorption[J]. Powder Technology,2019,350:15-25.
- [16] PFEIFER P. Fractals in surface science:scattering and thermodynamics of adsorbed films[J]. Chemistry and Physics of Solid Surfaces VII,1988:283-305.
- [17]PFEIFER P,WU Y,COLE M W,et al. Multilayer adsorption on a fractally rough surface[J]. Physical Review Letters,1989,62:1997-2000.
- [18]THOMMES M,KANEKO K,NEIMARK AV,et al. Physisorption of gases,with special reference to the evaluation of surface area and pore size distribution(IUPAC Technical Report)[R]. In:Pure Applied Chemistry,IUPAC&De Gruyter,2015.
- [19]SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity(Recommendations 1984)[J]. Pure and Applied Chemistry,1985,57:603-619.
- [20] MASTALERZ M, HAMPTON L, DROBNIAK A, et al.Significance of analytical particle size in low-pressure N2and CO2adsorption of coal and shale[J]. International Journal of Coal Geology,2017,178:122-131.
- [21] PFEIFER P,AVNIR D. Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces[J].The Journal of Chemical Physics,1983,79:3558-3565.
- [22]PRINZ D,PYCKHOUT-HINTZEN W,LITTKE R. Development of the meso-and macroporous structure of coals with rank as analysed with small angle neutron scattering and adsorption experiments[J].Fuel,2004,83:547-556.
- [23]RADOVIC L R,MENON V C,LEON Y,et al. On the porous structure of coals:evidence for an interconnected but constricted micropore system and implications for coalbed methane recovery[J].Adsorption,1997,3:221-232.
- [24]CUI X,BUSTIN R M,DIPPLE G. Selective transport of CO2,CH4,and N2in coals:insights from modeling of experimental gas adsorption data[J]. Fuel,2004,83:293-303.
- [25] HOU S, WANG X, WANG X, et al. Pore structure characterization of low volatile bituminous coals with different particle size and tectonic deformation using low pressure gas adsorption[J].International Journal of Coal Geology,2017,183:1-13.
- [26]CHEN Y,QIN Y,WEI C,et al. Porosity changes in progressively pulverized anthracite subsamples:Implications for the study of closed pore distribution in coals[J]. Fuel,2018,225:612-622.
- [27]DANG Z,WANG X,HOU S,et al. Effect of analytical particle size on pore structure of high volatile bituminous coal and anthracite using low-pressure N2and CO2adsorption[J]. Adsorption Science&Technology,2022,2022:2548390.
- [28]EI SHAFEI G M S,PHILIP C A,Moussa N A. Fractal analysis of hydroxyapatite from nitrogen isotherms[J]. Journal of Colloid and Interface Science,2004,277:410-416.